Asynchronous Research Center – preliminary data
ARC# 2010-is58

ASYNCHRONOUS RESEARCH CENTER

Portland State University

Subject:
The Centrifuge

Date:
December 22, 2010

From:
Ivan Sutherland

ARC#:
2010-is58

References:

Xiao Yang and Ruby B. Lee, Fast Subword Permutation Instructions Using Omega and Flip Network Stages, available on the web
PURPOSE

This memo describes a logic operation known as “the centrifuge” or “sheep and goats.” The centrifuge is a bit-wise bubble sort guided by a “key word” of bits. Key ones slide to one end of the word and key zeros slide to the other end. For example, the key 0010100101 becomes 1111000000. One or more data bits associated with each key bit move in a similar fashion. This memo also considers two extensions to the centrifuge operation: its inverse and a three-state version.

THE CENTRIFUGE OPERATION

The centrifuge operation associates one or more data bits with each bit in a word of key bits. The operation slides the key bits and their associated data sideways controlled by the value of the key bits. Key bits that are one slide to the left, carrying their data with them, until they are jammed up against the most significant end of the key word. Key bits that are zero slide to the right, carrying their data with them, until they are jammed up against the least significant end of the key word.

One can think of this operation as a sequence of swaps of adjacent key bits and their associated data. Key bits of like type never swap; this rule preserves the sequence of data associated with ones or zeros in the key. A key bit with value one always swaps with a key bit of value zero to its left. The centrifuge operation terminates when no more swaps are possible. The centrifuge operation reduces the key word to a contiguous group of ones on the left and a contiguous group of zeros on the right. Each group may have zero or more members.

HISTORY

I first became aware of this operation in a summer 2008 meeting with Professor Ruby B. Lee of Princeton University. Ruby’s husband is Howard Lee, formerly manager of chip engineering at Sun Microsystems. Ruby, Howard, Mel Freedman, Bert Sutherland and enjoyed a nice lunch at the Palo Alto country club to discuss how best Ruby might work towards inclusion of this operation in commercial computing equipment. I found her ideas interesting albeit difficult to commercialize. I intend the reference as an access point to her work; she and her students have published several papers on this subject.

At the 2008 meeting Ruby had no short name for the operation. I later found that people from NSA are not only familiar with the operation but also have two compact names for it: “the centrifuge” and “sheep and goats”. I find both names descriptive.

Early in 2010 I began working on a self-timed implementation of sheep and goats. I assembled a spice simulation in a file structure named “sheep”. My simulation used GasP modules to swap adjacent bits when appropriate. A maximum of N-1 swap times will complete the operation. The average completion time will be quicker. I also thought about the inverse centrifuge operation, but with little success.

During a November visit to University of Texas at Austin, Marly and I talked with Professor Jayadev Misra. He’s interested in parallel algorithms. We discussed the centrifuge operation with him. After our visit he sent a short unpublished paper called “Computing Sheep and Goat” dated 8 November 2010. It gives a formal description of the problem and suggests a solution that works in O(log n) time.
Julian Blake Kongsley and I had an exciting discussion of the centrifuge a week or two ago. He pointed out that if applied to multiple values the centrifuge is equivalent to a bubble sort. To visualize such a process, think of the key bits as perpendicular to the value bits. I visualize the key as a horizontal row containing M bits. I think of each number as a column of N bits where N is the bit length of the numbers. Together they form a matrix that’s M wide by N+1 tall. There are at most M columns. Each column of N bits represents a value associated with one of the M key bits. Swapping columns swaps both the key bits and the value bits. If the key is a copy of a particular bit position in the values, the process does a bubble sort on the numbers using the chosen bit as a binary sort key.

REPRESENTATION IN GasP

GasP control modules in a FIFO move values towards the output and bubbles towards the input. It moves “full” states towards the output and “empty” states towards the input. The centrifuge is exactly the same operation when one identifies the state wires in the GasP FIFO with the key bits of the centrifuge.

A GasP circuit for the centrifuge has M-1 GasP modules, one between each pair of key bits and their associated data bits. The key value is imposed on the M state wires connected to the M-1 GasP modules. A GasP module whose state wires are [zero, one] fires to interchange its two adjacent columns. The process is finished when no GasP module can fire.

Although a FIFO merely moves data in one direction, the centrifuge must move data in both directions. Because adjacent GasP stages always fire alternately, the same FIFO control can pass data in both directions. However, swapping data values between latches is harder than just moving them from one latch to another. Swapping data values between latches is hard because during the swap both become transparent and the two transparent latches form an unbroken loop.

There are two ways to avoid this transparent loop. The first uses redundant data encoding. Where the key is one, key and data bits move only to the left. Where the key is zero, key and data bits move only to the right. Thus a row of left-pointing latches, one for each bit position, holds the bit values associated with ones in the key. Likewise a row of right-pointing latches holds the values associated with zeros in the key. A multiplexer driven by the state wire chooses which of the latches represents the data in that bit position.

I used the redundant latch approach in my March 2010 designs. Fresh data passes into both redundant latches, even though only one of the latches is meaningful. This has the advantage that each of the redundant latches gets data from only two sources: either the input source or from its neighbor latch. However, this approach requires a multiplexer for each data bit.

Another way to avoid the two-latch swap loop uses auxiliary latches. Each bit position has a single latch with three inputs. One input accepts new input data. The other two inputs take data from the left and right adjacent latches. Each of these left and right inputs to the main latch passes through an auxiliary latch. The auxiliary latch is rendered opaque whenever its main latch input becomes transparent.

The auxiliary latch approach has two disadvantages. First, its three-input latches, and second, the auxiliary latches may retard the flow of data and thus cause timing problems. Starting in December 2010 I explored this approach. As a result of this exploration, I now believe the redundant data approach to be superior.

THE INVERSE CENTRIFUGE ALGORITHM

What is the inverse centrifuge operation and how might it be implemented? Like the centrifuge, the inverse centrifuge must slide key bits and their associated data sideways. The centrifuge starts with an initial key and slides the key bits sideways into a final compressed key. The final compressed key has ones and zeros jammed up against the ends of its word.

Instead of using the ends of the word to control when to stop, the inverse centrifuge must have a more flexible “target” of bit positions to reach. Moreover, its starting key is the final compressed key left by the centrifuge, with zeros and ones jammed against the ends of its word. Each key bit slides sideways until the final key matches the target.

A generalized centrifuge might transform any initial key value into a given target value. The simple centrifuge described at the start of this paper has an implicit target of ones and zeros jammed up against the ends of the key word. Its implicit target is consecutive ones followed by consecutive zeros. The generalized centrifuge might have a more complex target.

The number of ones and zeros in the initial key must match the number of ones and zeros in the target. Moreover, key bits that are one slide only in one direction and key bits that are zero slide only in the other direction. The generalized centrifuge puts additional constraints on the initial and target keys. Consider sliding ones to the left. For every position in the initial and target keys the number of ones to the right of that bit position in the initial key must exceed the number of ones to the right of that bit position in the target. The implicit target of the simple centrifuge meets this condition for any initial key.

IMPLEMENTING THE INVERSE CENTRIFUGE

Given a target key, how are we to “drop” the proper bits into each position identified by the target? A bit position in the target is “filled” if the target and key bits match at that position. To fill all of the bits positions in the target we can only swap bits in the key. Key bits in filled positions would not ordinarily swap, but it is important to override that rule if an unfilled bit position further along the word needs a bit presently matched in error at the wrong place.

The phrase “further along the word” suggests some kind of logic chain that can cause action at a distance. Symmetry demands that there be two such chains, one going in each direction. One of these chains acts on unfilled zero target positions and the other acts on unfilled one positions.

The circuit of Figure 1 includes such logic chains. At the bottom of the figure a four-bit target, tar[1:4] enters the figure. The logic chains appear below the GasP modules. The state wires are marked HI is one and LO is zero for reference. A reminder at the center bottom of the figure says that zeros move left, ones move right.

The vertical AND function central to each GasP module allows it to fire only if the bit positions on both sides agree that it should. The horizontal AND functions near the bottom of each GasP module require two conditions for a bit to permit a swap. First, key bits that are one, with HI state wires, can swap only to their right; key bits that are zero, with LO state wires, can swap only to their left.

The second condition for willingness to swap is slightly more complex. Each target bit enters two logical OR functions, one with bubbles on input and the other without. Thus a target zero target bit immediately enables the bottom input of the horizontal AND function to its right. But that swap can happen only if the state wire is HI, meaning one. Thus the swap enable for the local bit happens automatically if the target bit and the key bit differ, i.e. if this target position is unfilled.

The OR gate connected to the logic string provides permission to swap even if the target and the key bit agree. That permission is granted only if an unfilled target position “further along” needs the key bit in question.

There are two interesting properties of these series logic strings. First, notice that any swap that actually happens immediately denies permission to swap. Just as in a simpler GasP situation, the fire signal changes the state wires on both sides, thus shutting itself off after 5 gate delays. Second, notice that the series logic chain propagates permission to swap only through strings of key bits that match. The result of these two properties is that only the last key bit in a strong of like key bits can give permission to swap. Thus swap actions shorten the string only at its last bit position. Because the rest of the logic string remains unchanged, the series delay of the logic string occurs only once rather than starting again after each new fire event.

Figure 1 omits completion logic. The inverse centrifuge is finished when the key bits match the target exactly. Like many asynchronous termination conditions this one requires a broad AND function to detect that ALL bit positions are properly filled.

THREE-STATE CENTRIFUGE

Suppose that each position in the key can have three rather than two states. For example these might be “one”, “zero” and “undecided”. One generalization of the centrifuge operation slides the key bits of one to the left, key bits of zero to the right, and leaves undecided key bits in the middle. The final key ends up something like this: 1111xxxxxxx00000.

GasP circuits much like those for the two-state centrifuge can do this process. Each module fires under any of the three conditions shown in Table 1. A suitable encoding might use two state wires between GasP modules to represent the three states. One state wire, A, would be HI for keys with value zero, the other state wire, B, would be HI for keys with value one.

	Left condition
	Right condition
	
	
	Final state left
	Final state right

	
	
	
	
	
	

	zero
	undecided
	A=HI
	both LO
	undecided
	zero

	zero
	one
	A=HI
	B=HI
	one
	zero

	undecided
	one
	both LO
	B=HI
	one
	undecided

This document contains information developed at the Asynchronous Research Center at Portland State University. You may disclose this information to whomever you please. You may reproduce this document for any not-for-profit purpose. Reproduction for sale is strictly forbidden without written consent of the author. Copies of the material must contain this notice.

ARC# 2010-is58
printed on December 22, 2010 at 5:54
page 1

Asynchronous Research Center – preliminary data
ARC# 2010-is58
printed on December 22, 2010 at 5:54
page 5

Asynchronous Research Center – preliminary data

